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This article presents an analytical approach for the quantifica-
tion of the blood oxygen level dependent (BOLD) effect in the
capillary region. The capillary geometry of myocardium is
considered. The relaxation rate R*2 is determined as a function of
the capillary radius Rc, the intracapillary volume fraction RBV,
and the diffusion coefficient D. When the intracapillary volume
fraction is small, the approximation R *2 5 RBV · t21 ·
(Î1 1 (tdv) 2 2 1) is valid, with the correlation time t 5 (R c

2 /4D) ·
( 0 ln RBV 0 /(1 2 RBV)). The predictions of this model agree well
with numerical simulations and experimental data of others and
with data recently measured by our group. Magn Reson Med
41:51–62, 1999. r 1999 Wiley-Liss, Inc.
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INTRODUCTION

The BOLD (blood oxygen level dependent) effect in tissue
results from the paramagnetic deoxyhemoglobin in capillar-
ies and venous vessels. In addition to its application in
functional imaging of the brain (1), the BOLD effect has
been observed in cardiac imaging (2–5). This application
bears a great potential for the diagnosis of ischemic heart
disease. However, a quantitative model that considers param-
eters of myocardial microcirculation is a prerequisite. Al-
though it is not a problem to understand the BOLD effect
qualitatively, its quantitative analysis is very complex and
demands further evaluation. The acceleration of the transverse
relaxation depends on the concentration of deoxyhemoglobin
in the vessels and the geometry of the vessel network. Yablon-
ski and Haake (6) studied some geometries of cylindrical
vessels filled with a (para)magnetic substance and determined
the dephasing of spins induced by the inhomogeneous mag-
netic field in such vessel networks. In their work, the authors
considered the spins as stationary (static dephasing regime),
i.e., the diffusion of spins during relaxation was neglected.
This approximation is justified as long as the amplitude of the
field fluctuations that a diffusing nuclear spin ‘‘sees’’ during
relaxation is much smaller than the magnitude of this inhomo-
geneous field.

This theory, however, does not describe the BOLD effect
in myocardium, at least when clinical imaging systems (,2
T) are used, for the following reason: concerning the
myocardial blood volume, the dominating vessels are the
capillaries with a volume fraction of more than 90% of the
intramyocardial blood volume (7). The capillaries are
arranged parallel with an intercapillary distance of about
19 mm, i.e., one can assume a kind of periodicity of the
BOLD-related inhomogeneous field after this distance.
Typical relaxation times of transverse magnetization in
these low-field systems are in the range of T*2 5 30–40 ms.
Thus, the diffusion distance during relaxation (t . 2 3 T*2)
is ÎtD . 7 mm (diffusion coefficient D 5 1 mm2/ms), i.e.,
taking into account the intercapillary distance a nuclear
spin ‘‘sees’’ nearly the whole variation of the inhomoge-
neous field. Hence, the field fluctuations due to diffusion
are in the range of the magnitude of the inhomogeneous
field, which excludes the application of the theory of
Yablonski and Haake.

Another analytical approach to determine transverse
relaxation exists as long as the motional narrowing condi-
tion is valid. This condition states that the product of
correlation time and the magnitude of the field fluctuations
has to be significantly smaller than 1. When this condition
is fulfilled, the relaxation rate is simply

R*2 5 t · 7v28

where t is the correlation time and 7v28 the variance of the
precession frequency of the inhomogeneous field. Al-
though this approach can be widely used in other fields (8),
it is not appropriate for the description of the BOLD effect
in the capillary system. A crude approximation that pro-
vides the magnitude of the correlation time is given by the
diffusion time t 5 Rc

2/D, where Rc < 2.5 mm and is the
capillary radius and D 5 1 mm2/ms and is the diffusion
constant. The equatorial field around a capillary in a
low-field system (e.g., 1.25 T) may be estimated to be in the
range of 1 mgauss, i.e., the frequency is dv 5 168 rad s21

(6). Hence, the product t · dv < 1 does not fulfill the
motional narrowing condition.

Since there is no sufficient theory of the BOLD effect in
the capillary region, and since in at least some tissues such
as myocardium the capillary fraction clearly dominates,
our intention was to develop an analytical approach to
determine the transverse relaxation rate as a function of the
capillary/tissue geometry and the intracapillary BOLD-
related magnetization. In this study, we will only focus on
the decay of the transverse magnetization, which, for
example, can be observed in gradient echo sequences, i.e.
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this decay is due to reversible and irreversible dephasing of
transverse polarized spins. The article is structured as
follows: we will first construct a model of the capillary
system and tissue that reflects the geometry and topology
in myocardium. In the mathematical analysis, we will first
derive an expression of the correlation time of field fluctua-
tions that nuclear spins are subjected to while diffusing in
our tissue model. Thereafter, we will demonstrate that we
can replace the exact time evolution of transverse magneti-
zation determined by the Bloch-Torrey equation (9) by a
strong collision approximation. In contrast to other ap-
proaches, e.g., the motional narrowing approximation, the
strong collision approximation is not based on any assump-
tion of the relation of local field strength and correlation
time. Instead, its application is justified when the local
field fluctuations are rapid when compared with relax-
ation. The strong collision approximation leads directly to
an analytical expression of the Laplace transform of the
relaxation process, and this transform will provide the
relaxation time. In the following section, we will compare
our results with the computer simulations of Kennan et al.
(10) and the experimental data of Atalay et al. (2, 3) and our
own group (C. Wacker, et al., Noninvasive assessment of
myocardial oxygenation and perfusion without exogeneous
contrast agents using T*2 and T1, manuscript submitted).

TISSUE MODEL

1. The BOLD effect in tissue arises from the paramagnetic
property of deoxyhemoglobin, which, confined in capillar-
ies and venous vessels, induces a perivascular inhomoge-
neous magnetic field in the presence of an external mag-
netic field. The blood volume fraction of capillaries in
myocardium is more than 90% of the whole myocardial
blood volume (arterial plus capillary plus venous compart-
ment) (7), i.e., the fraction of the venous compartment is
less than 10%. This finding implies that in myocardium
the volume contribution of the capillaries to the BOLD
effect is clearly dominating. In our model, therefore, we
will consider only this vessel type.

2. The BOLD-related transverse relaxation of spins is
induced by the inhomogeneous magnetic field around
vessels containing deoxyhemoglobin. Since oxygen deliv-
ery from blood to tissue takes place in capillaries, there is a
gradient of deoxyhemoglobin along the capillary axis, i.e.,
there is also a pericapillary magnetic field gradient in this
direction. In myocardium, capillaries are arranged in paral-
lel to the muscle fibers. The intercapillary distance is <19
mm (11) and the length of a single capillary is more than
400 mm (11). Since the diffusion coefficient of water is
about D 5 1 mm2/ms and typical values for T*2 in myocar-
dium are in the range of 35 ms, the range of the diffusion
distance along the capillary axis within relaxation
(t < 2 2 3 3 T*2) is ÎtD < 8–10 mm, i.e., the diffusion
distance is short compared with the capillary length. Due
to the length of the capillary and this short diffusion
distance, the contribution of diffusion in the direction of
the capillary axis to relaxation is negligible when com-
pared with that of perpendicular diffusion. Hence, we only
consider diffusion of spins in the cross-sectional plane of
the capillary bed.

3. We only consider two compartments in tissue: the
intracapillary volume plus the capillary wall and the
extracapillary tissue. Since the interstitial-intracapillary
exchange rate of water protons was found to be less than 7
Hz (12), the extracapillary to intracapillary transport rate is
small compared with the relaxation rate T*221 and, there-
fore, is neglected. In our model, we assume, therefore,
reflectory boundary conditions at the capillary wall for a
diffusing nuclear spin of the interstitial space. Further-
more, we only consider the extracapillary fraction of
nuclear spins, due to their dominating contribution (.90%)
to overall magnetization.

4. In myocardium, the capillaries and muscle fibers form
an almost regular structure. Therefore, it is reasonable to
assign each capillary an area of tissue that is predomi-
nantly supplied by this capillary. According to Krogh’s
capillary model, this supply area is a coaxial cylinder
around the capillary the radius of which is Rs 5
1/Îp 3 capillary density. In our mathematical model, we
restrict diffusion of spins to this area. The legitimization
for this restriction and its mathematical implications for
evaluation of diffusion have already been discussed in
detail (13). One implication is that reflectory diffusive
boundary conditions have to be assumed for the trajecto-
ries of a nuclear spin at Rs, i.e., trajectories of spins that
pass from the supply area of the capillary under observa-
tion to that of the neighboring capillary are replaced by
symmetric trajectories that are located within the original
supply area. Together with Paragraphs 2 and 3, this implies
that the diffusion space is the area between concentric
circles: the inner one with the capillary radius Rc, the outer
one with the supply radius Rs (Fig. 1). Within this diffusion
space, we only consider the interaction of a nuclear spin
with the magnetic field around the central capillary, which

FIG. 1. Cross-sectional view of the capillary plus the coaxial
surrounding supply tissue with the trajectory of a diffusing nuclear
spin (NS) according to our model (see text). The radius of the
capillary is denoted as Rc that of the supply area as Rs. Reflectory
diffusive boundary conditions are assumed at the outer capillary wall
and the periphery of the supply area.
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is generated by the paramagnetic deoxyhemoglobin. Accord-
ing to basic magnetostatics (e.g., ref. 14) the difference of
intracapillary to extracapillary magnetization in the presence
of an external magnetic field B0 is determined by (cgs units)

DM 5 Dx · B0 ? sin2 (u) [1]

with Dx as the difference of the volume susceptibility (e.g.,
Dx 5 8 · 1028 for deoxygenated blood with a hematocrit of
40% (6, 10)) and the tilt angle u between the capillary axis
and the direction of the external field. The Larmor fre-
quency around the capillary is then determined by (14)

v(r, f) 5 2dv · Rc
2 cos (2f)/r 2 [2]

with the cylindrical coordinates x 5 (r, f) in the cross-
sectional plane of the capillary. The term dv is the charac-
teristic equatorial shift of the radial frequency of a magne-
tized cylinder, i.e., dv 5 0v(Rc, 0) 0 , which according to
magnetostatics is

dv 5 2pg · DM [3]

with g as the gyromagnetic ratio.

MATHEMATIC ANALYSIS

Determination of the Correlation Time

When we consider the trajectories xj(t) of an ensemble of N
spins, the autocorrelation function K(t) of the local NMR
frequencies v(x) is determined by (We assume that the
spatial average of v(x) vanishes, which is valid for our
model (see Eq. [2]). In general, this outcome can always be
achieved by normalization of v(x).)

K (t ) 5
1

N o
j51

N

v(xj (t )) · v(xj (0)) [4]

or when p(x, x0, t) defines the probability density to find a
spin at the point x after the time t with the initial (t 5 0)
position x0

K (t ) 5 e
V

dx e
V

dx0 v(x) · p (x, x0, t ) · v(x0 ) · p (x0 ) [5]

where ev denotes the integration over the diffusion space
with volume V, and p(x0) defines the probability density
function of the steady state, i.e., in this case, it is identical
with the spin density, which may be assumed to be
homogeneous in tissue, p(x0) 5 1/V. Since we assume free
diffusion of spins within the boundaries Rc # 0x 0 # Rs, the
probability p(x, x0, t) is simply the Green’s function of the
diffusion equation

­tp (x, x0, t ) 5 D=2p (x, x0, t ) [6]

i.e.,

p (x, x0, t ) 5 exp (D=2 · t )d(x 2 x0 ) [7]

with the reflectory boundary conditions ­r p(x, x0, t) 5 0 for
0x 0 5 Rc, Rs. In general, the function K(t) may be quite

complicated; however, usually a single exponential decay
is assumed, i.e.,

K (t ) 5 K (0) · exp (2t/t) [8]

where t is the correlation time. The correlation time
provides an information on the time after which the
fluctuations of the local fields may be considered as
stochastically independent, i.e., when t $ 2t the probabil-
ity density p(x, x0, t) satisfies the relation

p (x, x0, t ) < p (x) [9]

One way to approximate the correlation function by a
single exponential function is given by the mean relax-
ation time approximation (15)

t 5 e
0

`
dt K (t )/K (0) [10]

and with Eqs. [5] and [7] (see Appendix).

t 5
1

K(0) ? D ? V e
V

dx v(x) 32
1

=24 v(x)

5
1

2D
?

ln (Rs/Rc)

Rc
22 2 Rs

22
5 2

Rc
2

4D
?

ln (RBV)

1 2 RBV
[11]

where RBV 5 Rc
2/Rs

2 is the volume fraction of capillary
space (regional blood volume).

Time Evolution of the Magnetization

In this section, we will demonstrate the most important
step in the development of our model. We will replace the
exact time evolution of the magnetization by an evolution
based on the strong collision approach. The term strong
collision derives from the original field of application of
this approximation in statistical physics. When we con-
sider diffusion of spins within an inhomogeneous mag-
netic field, the time evolution of the local transverse
magnetization (notation in polar form, i.e., m 5 mx 2 imy)
is determined by the Bloch-Torrey (9) equation

­tm (x, t ) 5 (D=2 1 i · v(x))m(x, t ) [12]

which, after formal time integration, provides

m (x, t ) 5 exp [(D=2 1 i · v(x)) · t]m (x, 0) [13]

and for the whole magnetization

M (t ) 5
1

V e
V

dx exp [(D=2 1 i · v(x)) ? t]m (x, 0)

[14]

where v(x) is the local precession frequency. There are
only a few cases in which Eqs. [12]–[14] can be solved
analytically, e.g., when v(x) is the frequency of a linear
gradient field. In general, however, only numerical calcula-
tions or computer simulations (10) may be applied to
determine the time course of transverse magnetization.
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When we determine the correlation time of the local
field fluctuations that influence a diffusing nuclear spin,
we obtain for typical values of myocardium (RBV 5 5–10%,
Rc 5 2.75 mm, D 5 1 mm2/ms) t # 6 ms. Typical relaxation
times of the transverse magnetization in myocardium are
in the range of T*2 5 30–40 ms for magnets used in clinical
imaging systems. Since T*2 describes the influence of both,
non-BOLD and BOLD effects on relaxation, a relaxation
time describing only the BOLD effects would be even
longer. Hence, the time scale on which the local fields are
correlated is much smaller than the time scale of the
relaxation related to the BOLD effect. This finding implies
that, on the time scale of this transverse relaxation, the
local fields are uncorrelated.

Strong Collision Approximation

We, therefore, make the approximation to replace the
diffusion operator D=2 in Eqs. [12]–[14] by an operator

D 5 l(II 2 id) [15]

(16, 17) where II denotes the projection operator onto the
functional space generated by the steady state probability
function p(x), i.e., the application of this operator on a
function f (x) is

IIf (x) 5 p (x) · e
V

dx f (x) [16]

and id is the identity, i.e.,

id f (x) 5 f (x) [17]

The operator D describes the stochastic field fluctuations as a
stationary Markov process with the transition rates between
two distinct local field realizations v(x), v(x0) as l · p(x), i.e.,
the rate is independent of the initial state. An approach of
this type is referred to as random phase or strong collision
approximation (16, 17). Since in myocardium the water
proton density is rather homogeneous, the probability
density function of the steady state is simply p (x) 5 1/V.

The Green’s function pD(x, x0, t) of this transition opera-
tor D is

pD(x, x0, t) 5 exp (D ? t)d(x 2 x0)

5 exp (2lt(id 2 II))d(x2x0)

5 o
n50

` (2lt)n

n!
(id 2 II)n d(x 2 x0)

5 3id 1 o
n51

` (2lt)n

n!
(id 2 II)4 d(x 2 x0)

5 3II 1 id 2 II 1 o
n51

` (2lt)n

n!
(id 2 II)4 ? d(x 2 x0)

5 [II 1 e2lt(id 2 II)]d(x 2 x0)

5 p(x) ? (1 2 e2lt) 1 e2ltd(x 2 x0) [18]

where we applied the idempotency of the projection
operator (id 2 II), i.e., (id 2 II)n 5 (id 2 II) for n $ 1. The
transition rate l in the strong collision operator [15] is
determined self consistently. We require that D reproduces
the correlation time t of the local field fluctuations (Eq.
[11]). Since the correlation function of the field fluctua-
tions determined by the strong collision Green’s function
pD (Eqs. [5] and [18]) is

KD(t) 5 e
V

dx e
V

dx0 v(x) ? pD(x, x0, t) ? v(x0) ? p(x0)

5 KD(0) ? e2lt [19]

the transition rate has to be set as

l 5
1

t
[20]

The Eqs. [18] and [20] demonstrate that on the time scale
of the evolution of magnetization (:t) the relation

pD (x, x0, t ) < p (x) [21]

holds. Comparison with Eq. [9] shows that, in this case, the
Green’s function of the exact diffusion process p(x, x0, t) is
equivalent to the Green’s function of the stochastical
process determined by the operator D (Eq. [15]). Therefore,
it is justified to rewrite Eqs. [13] and [14] as

m (x, t ) 5 exp [(D 1 i · v(x)) · t]m (x, 0) [22]

or for the whole magnetization

M (t ) 5
1

V e
V

dx exp [(D 1 i · v(x)) · t]m (x, 0) [23]

Determination of Relaxation Time

Instead of solving Eq. [23], it is more suitable to consider
the Laplace transform of the magnetization decay, i.e.,

M̂(s) 5 e
0

`
dt e2s?t ? M(t) [24]

5
1

V e
V

dx
1

s 2 D 2 i ? v(x)
m(x, 0)

[25]

5
1

V e
V

dx
1

s 2 t21(II 2 id) 2 i ? v(x)
[26]

where we assume homogeneity of the initial magnetiza-
tion, which had been normalized to m(x, 0) 5 1.

It is useful to decompose s 2 D 2 i · v(x) into (see Eqs.
[15] and [16]) A 5 (s 1 t21)id 2 i · v(x) and B 5 2t21II 5

2t21. V21 eV dx and to transform Eq. [26] according to the
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operator identity 1/(A 1 B) 5 1/A 2 (1/A) · B · 1/(A 1 B),
i.e.,

where M̂0(s) is the Laplace transform of the time course of
magnetization that would be present in the absence of
diffusion (static dephasing regime). Equation [27] straight-
forwardly gives the expression of the Laplace transform M̂(s)

M̂ (s) 5
M̂0 (s 1 t21 )

1 2 t21 · M̂0 (s 1 t21 )
[28]

When the local frequency around the capillary is given
by Eq. [2], M̂0(s) has the form (see Appendix)

M̂0 (s) 5
Rc

2 1 Rs
2

Îs2Rs
4 1 dv2Rc

4 1 Rc
2Îs21 dv2

[29]

and, hence,

M̂(s) 5 (Rc
2 1 Rs

2) ? 1Î(s 1 t21)2Rs
4 1 dv2Rc

4

1 Rc
2 Î(s 1 t21)2 1 dv2 2 t21(Rc

2 1 Rs
2)2

21

5 (1 1 RBV ) ? 1Î(s 1 t21)2 1 dv2RBV 2

1 RBV Î(s 1 t21)2 1 dv2 2 t21(1 1 RBV )2
21

[30]

In principle, the Laplace transform M̂(s) provides all
information about the relaxation of magnetization. The
time course could be obtained by backward transforma-
tion; however, this process is very cumbersome. We are
interested in the relaxation time T*2, i.e., the time constant
that approximates best the magnetization decay by a single
exponential function

M (t ) 5 e 2t/T *2 [31]

This relaxation time can be determined according to the
mean relaxation time approximation (15) as

T*2 5 e
0

`
dt M(t ) [32]

A comparison with Eq. [24] shows that

T*2 5 M̂ (0) [33]

i.e., according to Eq. [30]

T*2 5 (1 1 RBV ) ? 1Ît22 1 dv2 RBV 2

1 RBV ? Ît22 1 dv2 2 t21(1 1 RBV )2
21

5 t ? (1 1 RBV ) ? 1 3Î1 1 (tdv ? RBV )2 214
1 RBV ? 3Î1 1 (tdv)2 2 14 2

21

, [34]

or when considering the rate R*2 5 1/T*2,

R*2 5 t21 ?
1

1 1 RBV
? 1 3Î1 1 (tdv ? RBV)2 2 14

1 RBV ? 3Î1 1 (tdv)2 2 14 2 [35]

APPLICATIONS

Approximations

Although Eq. [35] may appear rather complex, it can,
however, be transformed to a more suitable form for certain
limiting cases.

Motional Narrowing Limit

In the motional narrowing limit (t · dv 9 1) one obtains for
the relaxation rate from Eq. [35]

R*2 5 t · 1RBV ·
dv2

2 2 [36]

Using the variance 7v(x)28 of the local spin precession
frequency

Gv2(x)8: 5
1

V e
V

dx v2(x) 5 RBV ?
dv2

2
[37]

Equation [36] can be written as

R*2 5 t · 7v2 (x )8 [38]

Equation [36] is just the well-known general result for
transverse relaxation rate obtained for the motional narrow-
ing limit, i.e., our result correctly describes this.

Approximation for a Small Intracapillary Volume

In many tissues, the relative fraction of intracapillary
volume satisfies the condition RBV 9 1. Typical correla-

M̂(s) 5
1

V e
V

dx
1

(s 1 t21)id 2 i ? v(x)

5 M̂0(s 1 t21)

1
1

V e
V

dx
1

(s 1 t21)id 2 i ? v(x)

5 M̂0(s 1 t21)

? t21 ?
1

V e
V

dx
1

s 2 D 2 i ? v(x)

5 M̂(s)

5 M̂0(s 1 t21) 1 t21M̂0(s 1 t21) ? M̂(s) [27]

5
5

5
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tion times in myocardium (and also in other tissues) are
smaller than 6 ms (Eq. [11]). When considering the BOLD
effect, characteristic equatorial radial frequencies dv are
(see Eq. [3], Dx 5 8 · 1028 (18)) for imaging systems B0 #
2T, lower than 270 rad s21, i.e., the condition

(tdv · RBV)2 9 1 [39]

holds. Hence, Eq. [35] leads to

R*2 5 RBV · t21 · 1Î1 1 (tdv)2 2 12 [40]

Comparison with Simulations of Kennan et al.

Kennan et al. (10) performed Monte Carlo simulations of
diffusing spins within a square box the length of which was
assumed to be the distance between two neighboring
capillaries. The cross-section of a capillary filled with a
paramagnetic agent was located in the center of the box and
the field around the capillary was that of Eq. [2]. Addition-
ally, the fields of the four nearest neighbor capillaries were
considered. These authors investigated the effect of the
diffusion, intracapillary magnetization, and capillary diam-
eter on the transverse relaxation rate for spin-echo and
gradient echo experiments. Our analysis will only focus on
the results of the latter.

R*2 versus Diffusion Coefficient

For a realistic set of tissue parameters the dependence of
relaxation rate on diffusion evaluated by simulation is
shown in Fig. 2. It is evident that the curve determined
from our model (Eqs. [11] and [35]) is similar to that

determined from the data points of the simulation. For
smaller diffusion coefficients there is a difference of #20%
from our model curve. It has to be stated that our model
was developed under the assumption that the correlation
time of field fluctuations which are induced by diffusion is
considerably smaller than the BOLD-related relaxation
time of magnetization. This is obviously not the case for a
slow diffusion regime, i.e., small diffusion coefficients. On
the other hand, Fig. 2 demonstrates that the predictions of
the model are also valid for this range of diffusion coeffi-
cients. However, one has to keep in mind that in the strong
collision model the diffusion operator D=2 in the time
evolution operator is replaced by the operator t21 (II 2 id)
(Eq. [23]). Both operators vanish when the diffusion coeffi-
cient approaches zero. Hence, both dynamics of field
fluctuations have the same asymptotic time evolution of
magnetization, which is that of the static dephasing re-
gime. This explains the similarity of the model curve and
the curve obtained from simulation data in the range of
small diffusion coefficients.

R*2 versus Intracapillary Magnetization

From their simulations Kennan et al. observed a power law
for the dependence of relaxation rate on intracapillary
magnetization, or more precisely, on the intracapillary
extracapillary magnetization difference DM

R*2 , D M L [41]

For a slow (D 5 1023 mm2/ms), intermediate (D 5 0.65
mm2/ms), and rapid (D 5 2 mm2/ms) diffusion regime they
obtained L 5 1.1, 1.49, and 1.95 respectively, when DM is
varied from 0.1 to 1.6 mgauss. The intracapillary volume
fraction was chosen for the three regimes to be RBV 5 5%,
3%, and 5% and the capillary radius Rc 5 2.5 mm in all
regimes. When considered in our model, this implies
correlation times of t 5 4930, 8.69, and 2.46 ms (Eq. [11]).
The range of the characteristic frequency dv was given by
that of DM (Eq. [3]), i.e., it is 16.8–269 rad · s21. For the slow
diffusion regime, this implies that tdv : 1 and Eq. [35] can
be approximated by

R*2 5 RBV · 2dv [42]

Since dv , DM we obtain an exponent L 5 1 in the power
law Eq. [41].

For the rapid diffusion regime, the relation tdv 9 1
holds for the lower values of the dv(DM)-range, i.e., accord-
ing to Eq. [36] we would obtain an exponent L 5 2. For the
higher values of the characteristic frequencies the relation
tdv # 0.66 holds, i.e., when expanding Eq. [35] in a power
series of tdv, one has to consider the term of the 4th order
in this variable, i.e., when RBV is small

R*2 5 t21 · RBV 1⁄2 · ((tdv) 22 1⁄4 (tdv) 4) [43]

This correction explains why Kennan et al. found an
exponent somewhat smaller than 2.

For the intermediate diffusion regime, we analyzed Eq.
[35] for the parameters given by Kennan et al. for a
magnetization range of DM 5 0.16–5 mgauss and per-

FIG. 2. Transverse relaxation rate R*2 as a function of the tissue
diffusion coefficient D. The circles denote data that were obtained by
the computer simulation of Kennan et al. and taken from ref. (10) (see
text). These authors assumed a capillary diameter of 5 µm and a
volume fraction (RBV) of 5%. The difference of intracapillary extracap-
illary magnetization was chosen to be DM 5 Dx · B0 5 1.6 mgauss,
which would be present for deoxygenated blood (Dx 5 8 · 1028 for
hematocrit 5 40%) at B0 5 2 T. The second curve denotes data
obtained for these parameters from our model according to Eqs. [11]
and [35]. The characteristic frequency and the dipole field are
determined according to Eqs. [2] and [3] for DM 5 1.6 mgauss.
Realistic diffusion coefficients in tissue are in the range of 1 µm2/ms,
i.e., log10(D/1 µm2/ms) < 0.
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formed a linear regression analysis of this data (Fig. 3). The
exponent fitted was L 5 1.61, which is close to the value of
1.49 obtained from simulation experiments.

R*2 versus Intracapillary Blood Volume

The authors [10] investigated the dependence of the trans-
verse relaxation rate on the intracapillary volume fraction
RBV 5 Rc

2/Rs
2 where they varied this parameter by increas-

ing the capillary radius Rc or the intracapillary distance 2
Rs. In both cases, they found a nearly linear dependence;
however, the slope in the case of variable intercapillary
spacing was significantly smaller. We performed the same
analysis. Similar to Kennan et al., we considered the
diffusion coefficient D 5 0.65 mm2/ms and the intracapil-
lary magnetization as 1.6 mgauss. Since Kennan et al. did
not give the capillary radius and the relative intracapillary
volume from where they started varying either the capil-
lary radius or the intercapillary distance, we were not able
to reproduce their simulations exactly. We determined the
relaxation rate for a relative intracapillary volume of
RBV 5 5% and a capillary radius of 2.5 mm according to
Eqs. [11] and [35]. Then we varied Rc or Rs. As in the
simulations of Kennan et al., in both cases a nearly linear
dependence was evident (Fig. 4), and the slope of the
regression line was significantly higher in the case of a
variable capillary radius m 5 2.41 s21/% vs. m 5 1.51
s21/%.

Comparison with Experimental Data of Atalay et al.

Atalay et al. (2) performed T*2 sensitive gradient echo
imaging at 4.7 T in the isolated red cell perfused rabbit
heart at various oxygenation levels of the perfusate. This
perfusate contained a cardioplegic potassium concentra-
tion to minimize oxygen utilization. Additionally the
perfusate contained adenosine to achieve maximal vasodi-

lation. Together with the results presented in their second
article (3), these authors found an empirical relation be-
tween the transverse relaxation rate R*2 and the oxygen
saturation of hemoglobin in the perfusate

R*2 5 237 ? ln (0.29 1 0.7 ? [O2 2 saturation])s21

1 33.3 s21 [44]

According to our model, we determined R*2 for various
RBV values (5–15%) as a function of the oxygen saturation
of hemoglobin (Fig. 5). We assumed a mean capillary
diameter of 5.5 mm (11) (Rc 5 2.75 mm) and a diffusion
coefficient of 1 mm2/ms. According to Eq. [11], this method
provides correlation times between t 5 5.96 ms (RBV 5 5%)
and t 5 4.22 ms (RBV 5 15%). When blood is completely
deoxygenated, the characteristic frequency at 4.7 T is
(see Eqs. [1] and [3]) dv 5 632 rad · s21, and, hence,
(tdv · RBV)2 9 1, i.e., the condition of Eq. [39] holds and
we can approximate relaxation rate by Eq. [40].

The intracapillary oxygenation and, hence, intracapil-
lary magnetization, which is required for the model calcu-
lations is estimated according to the following consider-
ation. Since cardioplegic hearts were investigated, only
basal oxygen consumption has to be considered, which is
about MV̇O2,basal 5 0.02 ml O2/g(tissue)/min (19). The
relationship between oxygen consumption, perfusion F,
and arteriovenous difference of oxygen saturation DY is
given by

MV̇O2,basal 5 F · DY · [Hb] · 1.34 ml O2/g(Hb) [45]

The term [Hb] denotes the concentration of hemoglobin,
and the factor 1.34 ml O2/g(Hb) is Hüfner’s number. The
authors did not provide data about perfusion and concen-
tration of hemoglobin. However, they obtained a mean

FIG. 3. Logarithm of the transverse relaxation rate as a function of
the logarithm of the intracapillary extracapillary magnetization differ-
ence DM according to Eqs. [3] and [35]. The intracapillary volume
fraction was RBV 5 3%, the capillary radius was Rc 5 2.5 µm, and
the diffusion coefficient was D 5 0.65 µm2/ms, which were the
parameters of Kennan et al. in their simulation experiments for the
intermediate diffusion regime. A linear regression analysis is per-
formed. The slope of the regression line determines the exponent of
the power law (see Eq. [41] and text).

FIG. 4. Transverse relaxation rate R*2 as a function of the relative
intracapillary volume RBV obtained from Eqs. [11] and [35]. The filled
circles denote data in which RBV was altered by varying the capillary
radius, the open circles denote data in which the capillary radius was
held constant at 2.5 µm and the intercapillary distance was varied.
The diffusion coefficient was D 5 0.65 µm2/ms. The starting point of
both curves was an RBV 5 5% and an intracapillary radius of Rc 5

2.5 µm. Linear regression analysis revealed a slope of 1.53, 2.41
s21/% for the open and the filled circle curve, respectively.
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coronary flow of 23 ml/min (3). Hence, a lower limit of the
average perfusion can be estimated when the weight of a
rabbit heart is assumed to be ,15 g, i.e., F . 1.5 ml/g per
min. When we assume a reasonable lower bound of
hemoglobin concentration of [Hb] 5 12 g/100 ml (blood),
we obtain that the arteriovenous difference of oxygen
saturation is

DY , 8.3% [46]

which is considerably smaller than the arteriovenous
difference of a beating heart (<70%). This finding suggests
that the gradient of the intracapillary oxygen saturation
may be neglected, i.e., the intracapillary oxygenation level
is almost that of the perfusate Yp. Thus, we determined dv
according to Eqs. [1] and [3] for the susceptibility differ-
ence Dx 5 (1 2 Yp) · Dx0, with Dx0 5 8 · 1028 as the
susceptibility difference for complete deoxygenated blood.
Since experiments were performed in a horizontal system,
the long heart axis, and, hence, the mean orientation of the
capillaries was most probably perpendicular to the direc-
tion of the external field, i.e., the assumption that u 5 p/2
(Eqs. [1] and [3]) is reasonable, and the equatorial shift of
the radial frequency is dv 5 2pg · (1 2 Yp)Dx0 · B0.

Since we can only determine the BOLD-related part of
relaxation, the offset of the empirical function (Eq. [44]) at
100% oxygen saturation of hemoglobin (R*2(O2 sat. 5 1) 5
33.3 s21) was added to our data. Figure 5 demonstrates
clearly similarity between the empirical curve and the

curve obtained from our model when RBV 5 10%, which is
a reasonable value for a dilated microvascular system (20).

Comparison with Our Own Results

We performed diastolic measurements of myocardial T*2 in
healthy volunteers (n 5 15) in the short axis view by a
segmented gradient echo sequence, which acquires 10
successive gradient echoes per excitation (TE 5 6–54 ms,
DTE 5 5.4 ms). The exact description of the method, the
protocol, and the results is given in detail in another article
(C. Wacker, et al., manuscript submitted). In this section,
only the essentials of the results are reported to demon-
strate that the theory may be applied in this field. Measure-
ments were performed before and after application of the
vasodilator dipyridamol (0.56–0.84 mg/kg body weight,
continuous infusion) in a 1.5 T system. In this dosage,
dipyridamol has the property to increase coronary blood
flow from a value at rest of Frest < 0.8 ml/g per min to
Fdipyridamol 5 4 ml/g per min (21) with negligible effect on
myocardial performance, and hence, oxygen consumption.
Thus, the capillary deoxyhemoglobin concentration should
decrease and the BOLD effect should become evident. The
mean T*2 we determined under resting conditions was 36
ms, and we observed an increase of about 17% after
dipyridamol administration.

Under resting conditions, the oxygen pressure in the
venous coronary system is about 17 Torr (22), i.e., the
oxygenation of hemoglobin is about Yv,rest 5 25%. Arterial
oxygenation is almost Ya < 100%, and the myocardial
oxygen consumption MV̇O2 is proportional to coronary
blood flow and the arteriovenous difference of oxygenation
DYrest 5 Ya 2 Yv,rest, i.e.

MV̇O2 , F · DY [47]

Since dipyridamol does not alter the oxygen consump-
tion MV̇O2, administration of this drug reduces the arterio-
venous difference to

DYdipyridamol 5
Frest

Fdipyridamol
? DYrest [48]

5 15%, [49]

i.e., the venous oxygenation after dipyridamol administra-
tion is Yv,dipyridamol < 85%.

As a first step to estimate the myocardial BOLD effect
according to our model, we consider the intracapillary
oxygenation to be Yv. The dependence of the susceptibility
difference Dx on oxygenation is determined by Dx 5 Dx0.
(1 2 Yv), with Dx0 5 8 · 1028 for deoxygenated blood with a
hematocrit of 40%. When we take a capillary radius of 2.75
mm, an intercapillary distance of 19 mm (11), and a
diffusion coefficient of D 5 1 mm2/ms, the intracapillary
volume fraction is RBV 5 8.4% and the correlation time
t 5 5.11 ms (Eq. [11]). Insertion into Eqs. [1]–[3], and [35]
gives a BOLD-related relaxation rate of R*2 5 4.43 s21 under
resting conditions and R*2 5 0.2 s21 after dipyridamol
application. Hence, the BOLD-related decrease of relax-
ation rate is DR*2 5 24.23 s21. Under resting conditions, we
measured a mean T*2,rest < 36 ms, i.e., R*2,rest 5 27.7 s21.

FIG. 5. Transverse relaxation rate R*2 as a function of the oxygen
saturation of hemoglobin in myocardium. The dashed curve repre-
sents the empirical curve that Atalay et al. (3) obtained from gradient
echo imaging in isolated red cell perfused rabbit hearts at 4.7 T. The
solid curves were obtained from our model (see Eqs. [11] and [40]), in
which we assumed a capillary radius of Rc 5 2.75 µm; a relative
intracapillary volume of RBV 5 15%, 12%, 10%, 7%, 5%; and a
diffusion coefficient of D 5 1 µm2/ms. Since the curves obtained from
our model only considered the BOLD-related relaxation, they were
given the offset of the empirical curve at 100% oxygen saturation.
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Thus, our calculations would predict a rate of R*2,dipyridamol 5
23.47 s21 after dipyridamol administration, i.e.,
T*2,dipyridamol 5 42.6 ms. Similar calculations reveal for
capillary oxygenation levels of Y 5 30%, 35%, 40%, and
50% corresponding relaxation times of T*2,dipridamol 5 41.6
ms, 40.8 ms, 40 ms, and 39 ms, respectively. Hence,
calculations performed for a capillary oxygenation at rest
in the range of 25–35% predict an increase of T*2,rest by
13–18%, which is in good agreement with the increase of
17% obtained from experimental data.

It has to be stated that the considerations above are rather
crude. For example, we did not consider an intracapillary
gradient of oxygenation along the capillary axis. However,
the determination of such a gradient in myocardium is very
difficult. In the brain, for example, almost stationary
conditions of perfusion and oxygen consumption suggest a
stationary gradient of oxygenation in the direction of the
capillary axis. In the beating heart, the contractions of
myocardium lead to cyclic variations of oxygen consump-
tion and intracapillary flow. Thus, the intracapillary oxy-
genation is a complex function of the phasic oxygen
demand, phasic intracapillary red cell flux, and the diffu-
sion controlled oxygen transport from hemoglobin to extra-
capillary tissue. Some theories (23) assume a rapid deliv-
ery of oxygen from all intracapillary red blood cells in early
diastole, i.e., intracapillary oxygenation would rapidly
decrease to that of the venous system in early diastole. This
hypothesis would be in accordance with our calculations
that predict the observed increase of T*2 best when the
intracapillary oxygenation is close to that of the coronary
venous system. However, other theories assume several
heart cycles for the delivery of oxygen, which suggests the
formation of a longitudinal gradient of intracapillary oxy-
genation (23). To our knowledge no experimental data exist
of these gradients of intracapillary oxygenation in myocar-
dium. Hence, we think that our assumption above is
justified as a first step to estimate the BOLD effect in
myocardium.

DISCUSSION

Based on a simple model geometry of capillary and sur-
rounding tissue we derived an analytical expression for the
transverse relaxation rate as a function of the relative
capillary volume fraction, the capillary radius, the intracap-
illary magnetization and the diffusion coefficient. The
decisive step that allowed this analytical approach was the
application of the strong collision approach to the dynam-
ics of spin diffusion. The predictions of the model agree
well with the data obtained by simulation experiments of
Kennan et al. (10) and the experimental results of Atalay et
al. (2, 3) and our group (C. Wacker, et al., manuscript
submitted). It has to be emphasized that our approach may
also be transferred to other capillary arrangements besides
that in myocardium.

Model Assumptions

We considered diffusion between coaxial cylinders, i.e.,
the capillary and the supply cylinder. One might argue,
that we did not consider a rectangular geometry for the
diffusion space as others did for their simulations (10).

However, for morphometric analysis in myocardium a
hexagonal arrangement of capillaries is often assumed (11,
24). The capillary supply distance (half of the mean
intercapillary distance) is Rs 5 1/Îcapillary density · c
with c 5 2Î3 5 3.46 for the hexagonal, c 5 p for the
cylindrical, and c 5 4 for the rectangular model, i.e., the
cylindrical model is closer to the hexagonal one than the
rectangular. Furthermore, mathematical analysis is per-
formed much easier in the cylindrical model, and the
intention of our article preferred to demonstrate fundamen-
tal properties of our model rather than to reproduce
morphometrical exactness.

Within the diffusion space, we only considered the
interaction of a nuclear spin with the magnetic field
around one capillary, i.e., the field contribution of the
neighboring capillary was neglected. In myocardium, the
intercapillary distance is about 19 mm and the capillary
radius 2.75 mm (11). Hence, the contribution of a neighbor-
ing field at the periphery of the supply region field is less
than 10% from its maximum, i.e., as a first step it is
justified to neglect these fields.

In our model, we did not consider intravascular contribu-
tions to the BOLD effect. Boxerman et al. (25) performed
Monte Carlo simulations of diffusing spins to quantitate
signal changes in fMRI. The physiological and anatomical
parameters they applied in their simulations were that of
the brain. For an echo time of TE 5 40 ms and a relative
flow increase of e.g. 1.6, they obtained a BOLD-related
signal change of <1%, which is related to the extravascular
magnetization, and <2% when the intracapillary and
extravascular components are considered. When all compo-
nents that contribute to the BOLD effect are considered,
i.e., extravascular, intracapillary, and intravenous magneti-
zation, the signal change was about 3.5%. Hence, the
authors state that the intravascular contribution of the
BOLD effect to signal change is clearly dominating. In our
model, we did not consider the intravascular or intracapil-
lary contribution to the BOLD effect, since the anatomical
and physiological situation is different in myocardium. In
myocardium the intravascular volume consists mainly of
the intracapillary volume (.90%) (7), whereas the volume
of the venous system is less than 10% of the intravascular
volume. In the brain, however, the volume fractions of both
the intracapillary and intravenous system are almost the
same (25). This finding suggests that the contribution of the
venous system to the BOLD effect is considerable in the
brain, although it may be negligible in myocardium. When
we restrict our considerations to the capillary system, there
are also decisive differences between both tissues: the
relative volume fraction of the intracapillary space is
higher in myocardium (<8.4% (12)) than in the brain
(<2%), which implies that more extravascular spins are
affected by the pericapillary magnetic field gradient in
myocardium than in the brain. Another point is that the
oxygen extraction within the capillary is much higher in
myocardium. This finding leads to a venous oxygenation of
about 25%, whereas in the brain it is 60%. Furthermore,
there is phasic oxygen delivery in myocardium, i.e., there
is not stationary oxygenation gradient along the capillary
axis as there is in the brain. Some authors even assume that
almost the whole oxygen delivery takes place in early
diastole (23), i.e., the intracapillary oxygenation would
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rapidly decline to that of the coronary venous system
during diastole. This finding suggests that the magnitude
of the pericapillary magnetic field, and hence, the contribu-
tion of the extravascular relaxation enhancement to the
BOLD effect is much higher in myocardium than in the
brain. This finding can also be quantified as follows: a
relative signal change of about 1% (TE 5 40 ms) due to the
extravascular contribution of the BOLD effect in the brain
(25) suggests an increase of the relaxation rate of DR*2 5

0.25 s21, when we assume that the relative signal change is
1 2 e2TE·DR*2 < TE · DR*2. In myocardium, our model, which
only considers extravascular BOLD effects, reveals reason-
able increases of relaxation rate in the order of DR*2 < 4 s21,
i.e., 16 times higher than that in the brain. Therefore, we
think that as a first step it is justified to consider only the
extravascular magnetization and its contribution to relax-
ation in myocardium. Nevertheless, our model may be
developed to a model that also includes the effect of
intracapillary magnetization. In this case, tissue is consid-
ered as a two-compartment system, with two intrinsic
relaxation rates: the intracapillary and the extravascular
relaxation rate, of which the latter is determined according
to our model. In another context, we recently derived an
analytical expression that provides the relaxation rate of
such a two-compartment system as a function of the
intracapillary and extravascular relaxation rate, and the
exchange rate between both compartments (26). The appli-
cation of this complex model will be one of our future
aims.

In our model, capillaries are considered as cylinders
filled with blood. Blood inside the capillaries is assumed to
be a homogeneous magnetic substance, and the pericapil-
lary magnetic field is determined according to principles of
magnetostatics. This assumption is valid in larger vessels;
however, in capillaries the situation is different. The
cross-section of a capillary is approximately the size of an
erythrocyte. This finding suggests that blood inside the
capillary may be considered as an almost linear arrange-
ment of single red blood cells with plasma in between. The
BOLD effect is related to the paramagnetic property of
deoxyhemoglobin, which is confined to the red blood cells.
Thus, the inhomogeneous magnetic field in tissue is a
superposition of the magnetic fields around the red blood
cells. This finding suggests that the pericapillary field
strength is stronger in the near side of capillary segments
that contain an erythrocyte than in segments in between
that are filled with plasma. This pericapillary magnetic
field is obviously more complex than the field around a
homogeneous paramagnetic cylinder, as we assumed in
our model. However, the determination of this complex
field is hampered by several obstacles: the toroidal shape
of red blood cells in large vessels changes as these cells
enter the capillary, due to mechanical and hydrodynamical
interactions of the erythrocyte with the capillary wall and
plasma. There is no simple mathematical description for
this intracapillary shape of red blood cells, i.e., the mag-
netic field outside the cell cannot be described by a simple
formula. Furthermore, this intracapillary shape of the
erythrocyte may be a time-dependent function of mechani-
cal forces, e.g., intramural cyclic pressure variations in
myocardium. Due to this complicated situation, it appears

that at the present state of knowledge our capillary-tissue
model may be a reasonable approach to start with. This
model bears the potential to be elaborated for a more
realistic, and, hence, complex description of structures in
tissue.

Relaxation

We assumed in our analysis a single exponential decay of
the relaxation curve. One might argue that in general a
multiexponential fit has to be applied. However, at present,
the experimental data do only reveal enough information
to justify a single exponential approach. Furthermore, our
model is not limited to a single exponential fit, but it can be
expanded to a multiexponential fit of any order. Since we
could determine the Laplace transform (Eq. [30]) of the
transverse magnetization decay, the full information of the
exact relaxation curve is available. Based on the theory of
generalized moment expansion, one of us recently devel-
oped an algorithm that allowed a multiexponential approxi-
mation of nth order of the relaxation curve from the
Laplace transform (15). We had already applied this multi-
exponential approximation to spin relaxation (17); how-
ever, we believe experimental data suggesting a non-single
exponential decay should be a prerequisite.

In our study, we only considered the decay of magnetiza-
tion that is detected by gradient echo sequences, i.e.,
reversible and irreversible dephasing effects contribute to
transverse relaxation. In contrast, in spin-echo sequences,
irreversible dephasing effects are detected. In principle,
time evolution of magnetization in spin-echo sequences
may also be determined according to the strong collision
model. The operator of time evolution in Eq. [23] has to be
replaced by a sequence of this operator and its complex
adjoint operator, in which the latter describes the time
evolution after the 1807 pulse. When multiecho sequences
with n echoes is used, this operator sequence has to be
repeated n times. Obviously, the mathematical analysis of
this relaxation is much more complex and will be one of
our future goals.

APPENDIX

Derivation of the Correlation Time

The solution of Eq. [11] requires the determination of a
function f (x) 5 2(1/=2)v(x). This function has to satisfy the
inhomogeneous differential equation

=2f (x) 5 2v(x) [A1]

Since v(x) 5 2dv · Rc
2 · cos(2f)/r2 (cylindrical coordinates

x 5 (r, f)), we make the approach

f (x) 5 g(r) · cos (2f) [A2]

Application of the operator =2 5 r21­r r­r 1 r22­f
2 (cylindri-

cal coordinates) on f results in

­r
2g (r ) 1 r 21­rg (r) 2 4r 22g (r) 5 dvRc

2r22 [A3]
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Equation [A3] is solved by

g (r) 5 a · r 2 1 b · r 22 2
dv · Rc

2

4
[A4]

where the constants a and b are determined so that Eq. [A4]
satisfies the boundary conditions of the diffusion process,
i.e., ­rg(r) 5 0 when r 5 Rc, Rs. This implies that a 5 b 5 0,
i.e.,

f (x) 5 2 cos (2f) ·
dvRc

2

4
[A5]

Insertion of f in Eq. [11] gives

t 5
1

K(0)DV
? e

V
dx v(x) ? f (x) [A6]

5
1

K(0)V
? e

Rc

Rs e
0

2p
dr rdf cos2 (2f)r22 ?

dv2Rc
4

4D
[A7]

5
1

K(0)V
? ln (Rs/Rc)

pdv2Rc
4

4D
[A8]

with

K(0) 5
1

V e
V

dx v(x)2 [A9]

5
1

V e
Rc

Rs e
0

2p
dr rdf(dvRc

2 ? cos (2f)r22)2 [A10]

5
1

V
(Rc

22 2 Rs
22)

pdv2Rc
4

2
[A11]

this directly provides the result of Eq. [11].

Derivation of the Laplace transform M̂0(s)

The Laplace transform of the time course of magnetization
in the absence of diffusion (static dephasing regime) is

Elementary integral transformation and substitution of
eif 5 z provides the integral I(r)

I(r) 5 e
0

2p
df

1

r 2s 1 idvRc
2 cos 2f

5 e
0

2p
df

1

r 2s 1 idvRc
2 cos f

5 r3z351
dz

1

iz
?

1

r 2s 1 idvRc
2

1

2 1z 1
1

z2

5 2 r3z351
dz

1

Rc
2dv1/2(z2 1 1) 2 isr2z

5 22pi ? Res 1
1

Rc
2dv1/2(z2 1 1) 2 isr 2z

, 0zp 0 , 12

5 22pi ?
1

Rc
2dv/2

?
1

zp1 2 zp2

5 2p
1

Îs2r 4 1 Rc
4dv2

[A13]

where zp2 5 i · [sr2 1 Î(s 2r 4 1 Rc
4dv2 )/(Rc

2dv)] and zp1 5

i · [sr2 2 Î(s2r 4 1 Rc
4dv2 )/(Rc

2dv)] denote the poles of the
complex function (Rc

2dv(1/2)(z2 1 1) 2 isr2z)21. The abso-
lute value of the latter is smaller than 1.

Substitution of the right-hand side of Eq. [A13] in Eq.
[A12] provides

M̂0(s) 5
2p

V e
Rc

Rs
dr r 3

1

Îs2r 4 1 Rc
4dv2

5
2p

4Vs2 e
s2Rc

4
s2Rs

4

dj
1

Îj 1 Rc
4dv2

5
1

s2 ? (Rs
2 2 Rc

2)

? 1Îs2Rs
4 1 dv2Rc

4 2 Rc
2Îs2 1 dv2 2

5
Rc

2 1 Rs
2

Îs2Rs
4 1 dv2Rc

4 1 Rc
2 Îs2 1 dv2

[A14]
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